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Abstract

In this thesis, we propose two new machine learning schemes, a Subband-based Indepen-
dent Component Analysis scheme and a hybrid Independent Component Analysis/Support
Vector Machine scheme, and apply them to the problems of blind acoustic signal separation
and face detection.

Based on a linear model, classical Independent Component Analysis (ICA) provides a
method of representing data as independent components. In contrast to Principal Compo-
nent Analysis (PCA), which decorrelates the data based on its covariance matrix, ICA uses
higher-order statistics of the data to minimize the dependence between the components of the
system output. An important application of ICA is blind source separation. However, classical
ICA algorithms do not work well for separation in the presence of noise or when performed
on-line. Inspired by the psychoacoustic discovery that humans perceive and process acoustic
signals in different frequency bands independently, we propose a new algorithm, subband-based
ICA, that integrates I[CA with time-frequency analysis to separate mixed signals. In subband-
based ICA, the separations are performed in parallel in several frequency bands. Wavelet
decomposition and best basis selection in wavelet/DCT packets can be incorporated into this
algorithm. Subband-based ICA is computationally fast, robust to noise, and works well in an
on-line version when other ICA algorithms fail. The virtually increased signal-to-noise ratio
in those frequency bands where the separations are actually performed, and the fact that sub-
band signals, i.e., wavelet coeflicients, are more peaky and heavy-tailed distributed than the
original signals, both contribute to the success of subband-based ICA. Experimental results on
separating noisy speech mixtures and musical signal mixtures demonstrate its effectiveness.

This research was funded in part by the Department of Defense and the Army Research Laboratory under
Contract MDA 9049-6C-1250. Thanks to Sara Larson for formatting this report.



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
AUG 2000 2. REPORT TYPE 00-08-2000 to 00-08-2000
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Learning Algorithmsfor Audio and Video Processing - | ndependent
Component Analysisand Support Vector Machine Based Approaches

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
L anguage and M edia Processing L abor atory, I nstitute for Advanced REPORT NUMBER

Computer Studies,University of Maryland,College Park,M D,20742-3275

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 54
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



In addition to separating mixed signals, [CA can also be used as a feature extractor. As
argued by many researchers in the neural research area, a principle of sensory information
processing in the brain is redundancy reduction. The ICA representation of the data follows
this principle. Also, from a signal processing viewpoint, ICA provides a nice way to cluster
independent signals and hence leads to a better representation of signals than PCA.

Motivated by the feature extraction capability of ICA, we propose a new hybrid unsuper-
vised /supervised learning scheme that integrates Independent Component Analysis with the
Support Vector Machine (SVM) approach and apply this new learning scheme to the face
detection problem. SVM is a new powerful machine learning algorithm which is rooted in
statistical learning theory. As an approximate implementation of the Structural Risk Min-
imization (SRM) Principle proposed in statistical learning theory, SVM tends to have good
generalization performance. One common characteristic shared by ICA and SVM is sparsity.
The ICA output is sparse, and the support vectors whose linear combination comprises the
trained SVM are also sparse. Thus integrating [CA with SVM yields a new hybrid hierarchical
sparse learning scheme.

Specifically, for the face detection problem we use ICA in two different ways to extract
low-level features from a window sliding over an image, and then apply SVM at a high level to
classify the extracted ICA features as a face or not. Experimental results show that using the
first method to extract [CA features and applying SVM for classification effectively improves the
detection system performance, compared with applying SVM directly to the original image data.

Finally as a general learning scheme, hybrid ICA/SVM can be applied to other pattern
recognition problems as well as to face detection.
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Abstract

In this thesis, we propose two new machine learning schemes, a Subband-based Indepen-
dent Component Analysis scheme and a hybrid Independent Component Analysis/Support
Vector Machine scheme, and apply them to the problems of blind acoustic signal separation
and face detection.

Based on a linear model, classical Independent Component Analysis (ICA) provides a
method of representing data as independent components. In contrast to Principal Compo-
nent Analysis (PCA), which decorrelates the data based on its covariance matrix, ICA uses
higher-order statistics of the data to minimize the dependence between the components of the
system output. An important application of ICA is blind source separation. However, classical
ICA algorithms do not work well for separation in the presence of noise or when performed
on-line. Inspired by the psychoacoustic discovery that humans perceive and process acoustic
signals in different frequency bands independently, we propose a new algorithm, subband-based
ICA, that integrates I[CA with time-frequency analysis to separate mixed signals. In subband-
based ICA, the separations are performed in parallel in several frequency bands. Wavelet
decomposition and best basis selection in wavelet/DCT packets can be incorporated into this
algorithm. Subband-based ICA is computationally fast, robust to noise, and works well in an
on-line version when other ICA algorithms fail. The virtually increased signal-to-noise ratio
in those frequency bands where the separations are actually performed, and the fact that sub-
band signals, i.e., wavelet coefficients, are more peaky and heavy-tailed distributed than the
original signals, both contribute to the success of subband-based ICA. Experimental results on
separating noisy speech mixtures and musical signal mixtures demonstrate its effectiveness.

In addition to separating mixed signals, [CA can also be used as a feature extractor. As
argued by many researchers in the neural research area, a principle of sensory information



processing in the brain is redundancy reduction. The ICA representation of the data follows
this principle. Also, from a signal processing viewpoint, ICA provides a nice way to cluster
independent signals and hence leads to a better representation of signals than PCA.

Motivated by the feature extraction capability of ICA, we propose a new hybrid unsuper-
vised/supervised learning scheme that integrates Independent Component Analysis with the
Support Vector Machine (SVM) approach and apply this new learning scheme to the face
detection problem. SVM is a new powerful machine learning algorithm which is rooted in
statistical learning theory. As an approximate implementation of the Structural Risk Min-
imization (SRM) Principle proposed in statistical learning theory, SVM tends to have good
generalization performance. One common characteristic shared by ICA and SVM is sparsity.
The ICA output is sparse, and the support vectors whose linear combination comprises the
trained SVM are also sparse. Thus integrating [CA with SVM yields a new hybrid hierarchical
sparse learning scheme.

Specifically, for the face detection problem we use ICA in two different ways to extract
low-level features from a window sliding over an image, and then apply SVM at a high level to
classify the extracted ICA features as a face or not. Experimental results show that using the
first method to extract [CA features and applying SVM for classification effectively improves the
detection system performance, compared with applying SVM directly to the original image data.

Finally as a general learning scheme, hybrid ICA/SVM can be applied to other pattern
recognition problems as well as to face detection.



Chapter 1

Introduction

In this thesis, we propose two new machine learning schemes, a Subband-based Independent
Component Analysis scheme and a hybrid Independent Component Analysis/Support Vector
Machine scheme, and apply them in the problems of blind acoustic signal separation and face
detection. This introduction provides brief summaries of these two learning schemes and an
outline of the dissertation. In Section 1.1 we give a short background review of Independent
Component Analysis and Support Vector Machines. The motivations and concise descriptions
of our two new learning schemes are described in Section 1.2, and the organization of the
dissertation is outlined in Section 1.3.

1.1 Background Review

1.1.1 Independent Component Analysis

A common problem in statistics, signal processing, and neural network research is how to de-
sign an appropriate representation for multivariate data. Based on a linear model, Independent
Component Analysis offers a method of representing the data as independent components. In
contrast to Principal Component Analysis, which decorrelates the data based on its covariance
matrix, ICA uses higher-order statistics of the data to minimize the dependence between the
components of the representation. Such a representation seems to capture the essential struc-
ture of the data in many problems. As a result, ICA is being used in an increasing number of
applications, such as speech enhancement and recognition, telecommunication, biomedical sig-
nal analysis, and image denoising and recognition [3, 12, 39, 8, 42, 36, 21]. In these applications,
the problems to which ICA is applied include blind source separation, blind deconvolution, and
feature extraction.

In the blind source separation problem, ICA is applied to recover independent unknown
sources given only sensor observations that are unknown linear mixtures of the unobserved
sources and noise. ICA has been successfully applied to separate acoustic signals, electroen-
cephalographic (EEG) signals, and magnetoencephalographic (MEG) signals. Also, ICA has
been used in the blind equalization and Code Division Multiple Access (CDMA) system in
communications. For the blind deconvolution problem, if we transform the data to the fre-
quency domain, the problem becomes the same as the blind separation problem, so that it can
be tackled by ICA too.

In the feature extraction problem, ICA aims to find an independent basis or representation
coefficients for the data. In [7, 6, 5, 20], Barlow et al. argued that a principle of sensory
information processing in the brain is redundancy reduction. The ICA representation of the
data follows this principle. In [9] Bell and Sejnowski point out that the independent components



of natural scenes are edge filters. In [48], Olshausen and Field show, under the noise-free
assumption, an equivalence between an ICA algorithm and sparse coding, another method of
implementing the redundancy reduction principle. In [63], Hateren et al. report a detailed
comparison between ICA features and the properties of simple cells in the macaque primary
visual cortex, and find good matches to most of the parameters. Besides these discoveries of
psychological and neural research, from the signal processing viewpoint, I[CA provides a nice
way of clustering independent signals and hence leads to a better representation of signals than
classical Principal Component Analysis. This also justifies the use of [CA for feature extraction.
ICA feature extraction has been applied to face recognition and image denoising and satisfying
results have been obtained.

1.1.2 Support Vector Machines and Statistical Learning Theory

The Support Vector Machine (SVM) is a powerful machine learning algorithm, which is rooted
in statistical learning theory. According to the Structural Risk Minimization (SRM) Principle
in statistical learning theory [65], the error rate of a learning machine on test data is bounded
by the sum of the training error rate and a term that depends on the Vapnik-Chervonenkis
(VC) dimension and indicates the complexity of the model. By first nonlinearly mapping the
input data into a high-dimensional feature space, and then constructing a hyperplane as the
decision surface in that space which leaves the maximal margin between positive and negative
examples, SVM approximately implements the SRM Principle. Thus the training error rate and
the model complexity can be minimized at the same time by SVM. Therefore, in theory, SVM
tends to have good generalization performances. Many applications have also demonstrated the
good generalization performance of SVM, including isolated handwritten digit recognition [58],
object recognition [10], speaker identification [57], and face detection [49].
In addition to good generalization performance, SVM has many other nice properties:

¢ By reformulating the primary quadratic programming (QP) problem encountered in SVM
training into its dual problem and using a suitable inner-product kernel, SVM controls
the model complexity independently of the dimensionality of the feature space. Actually,
infinite feature spaces are allowed in SVM.

e Moreover, the convex cost function in the QP problem guarantees that SVM will find a
globally optimal solution, while many other learning algorithms suffer from falling into
local extrema.

¢ By solving the QP problem during the training phase, SVM automatically tunes all the
parameters in a learning scheme.

e The support vectors, whose linear combination comprises the trained SVM, are usually
sparse. By reformulating SVM in the framework of regularization theory, Girosi [29] shows
an equivalence between SVMs and a Sparse Approximation (SA) scheme that resembles
the Basis Pursuit De-Noising algorithm [14]. This reveals the relationship between SVM
and other known techniques.

1.2 Motivation and Contributions

Motivated by discoveries in mammalian acoustic and visual systems, we propose two new learn-
ing schemes for acoustic and visual signal processing, which are briefly described in the follow-
ing sections.



1.2.1 Integration of ICA and Time-Frequency Analysis

Though classical ICA algorithms have been applied to address the problem of blind source
separation, they do not work well in the presence of noise or when performed on-line. Inspired
by the psychoacoustic discovery that humans perceive and process acoustic signals in different
frequency bands independently [1, 43], we propose a new algorithm, subband-based ICA, that
integrates [CA with time-frequency analysis to separate mixed signals. In subband-based ICA,
the separations are performed in parallel in several frequency bands. Wavelet decomposition and
best basis selection in wavelet/DCT packets can be incorporated into this algorithm. Subband
based ICA is computationally fast, robust to noise, and works well in an on-line version when
other ICA algorithms fail. The virtually increased signal-to-noise ratio in those frequency
bands, the fact that subband signals, i.e., wavelet coefficients, are more peaky and heavy-tailed
distributed than the original signals, and the adaptation to the properties of the signal and
noise by the incorporation of best basis selection algorithm, all contribute to the success of
subband-based ICA. Experimental results on separating noisy speech mixtures and musical
signal mixtures demonstrate its effectiveness.

1.2.2 Face Detection Based on the Hybrid ICA/SVM Learning Scheme

Motivated by the feature extraction capability of [CA as mentioned in Section 1.1.1, we propose
a new hybrid unsupervised /supervised learning scheme that integrates Independent Component
Analysis with the Support Vector Machine and we apply this new learning scheme to the face
detection problem. Specifically, we use ICA in two different ways to extract low-level features
from a window sliding over an image, and then apply SVM at a high level to decide whether the
extracted ICA features represent a face. Experimental results show that using the first method
of extracting ICA features effectively improves detection system performance, compared with
applying SVM directly to the original image data.

An interesting comment about the hybrid learning scheme is that ICA and SVM share a
common characteristic, sparsity. The ICA output is sparse, and the support vectors in SVM
are also sparse. Hence the hybrid learning scheme has a hierarchical sparse architecture.

Furthermore, as a general learning scheme, hybrid ICA/SVM can be applied to pattern
recognition problems other than face detection.

1.3 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we introduce the classical ICA
algorithm, propose the new subband-based ICA, and apply the new algorithm to separating
mixed acoustic signals. In Chapter 3, we present a review and discussion of SVM. Finally,
in Chapter 4, we propose the hybrid ICA/SVM learning scheme, and apply it to the face
detection problem.



Chapter 2

Subband-based Independent Component Analysis

2.1 Introduction

Independent Component Analysis (ICA) can recover independent sources given only sensor
observations that are unknown linear mixtures of the unobserved source signals and noise. In
contrast to Principal Component Analysis, which decorrelates signals based on the covariance
matrix, ICA uses higher-order statistics of the signals to find independent components. ICA
has many applications in speech enhancement and recognition, telecommunication, biomedical
signal analysis, and image denoising and recognition [3, 12, 39, 8, 42, 36]. However, classical
ICA algorithms do not work well on-line or in the presence of noise. Inspired by the psychoa-
coustic discoveries connecting auditory perception and wavelet theory, a new ICA algorithm,
subband-based ICA, is proposed to separate independent signals. Experimental results on sep-
arating mixed acoustic signals demonstrate its robustness to noise and its high efficiency when
performed on-line.

2.2 Classical ICA System Model and Learning Rule

While several nonlinear ICA algorithms have been proposed [37, 40], most of the contributions
to the ICA literature are based on the linear input mixture model, which is defined as

x(t) = As(t) + b(t),

where s(t) = [s1(%), sz(t) s,(1)]T is an unknown source signal vector at discrete time ¢,
x(t) = [21(2), z2(2), . xn(t)] is the observation signal vector, A is a full-rank n X n mixing
matrix, and b(#) is noise. The components of the vector s(t), i.e., s1(), s2(?), ..., sn(t), come

from n independent sources. Unlike factor analysis addressed by an EM algorithm [28], which
assumes that b(#) is normally distributed with a diagonal covariance matrix and s(t) is also
normally distributed, ICA algorithms are derived on the assumption of noise-free measurements.
In practice, many ICA algorithms do not work well on noisy mixtures.

Given the mixture model, the aim of ICA is to recover the original source signal s(¢). To
this end, the following simple separation model is used, corresponding to the above linear
mixture model:

y(1) = Wx(1),

where y(t) = [y1(t), ¥2(1), . . ., ¥ (1)]7 is an estimate of s(¢) and W is the unmixing matrix, i.e.,
an estimate of the inverse of A.

To obtain the learning rule for the unmixing matrix W, we use the natural gradient [4] to
minimize the Kullback-Leibler divergence between the source signal vector s and its estimate
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y, i.e.,

D(fy Il fs) = /fy(t)log ]J:y((i))

where fy and f; are the probability density functions (pdfs) of y and s. The pdfs are approx-

dy

imated by truncation of the Gram-Charlier expansion. The following learning rule is then ob-
tained:

Q=1I-g(y(n)y'(n),
W(n+1)=W(n)+n(n)QW7(n),

~ o~
N DN
[N

where T is the identity matrix, n(n) is the learning rate, and g(y) = (g(%1),-- -, 9(y))T is a
nonlinear function [31],

15 2, 154 2 4 112 44 15 912 4,

z)= =% —z —z —z - —=z 128277 — —=27".

S S SRR 37 3
Since natural signals are usually super-Gaussian, we can also simply use 2tanh(z) as the non-
linear function g(z) when applying learning rules (2.1) and (2.2) to separate speech or music
signals [39].
Furthermore, based on [2] we can derive a nonholonomic version of the learning rule that is

(2.3)

suitable for on-line signal separation. In the nonholonomic version, the diagonal elements of Q
are set to zero.

2.3 Subband-based ICA

Many psychoacoustic experiments have shown that humans perceive and process acoustic signals
in different frequency bands independently [1, 43]. Inspired by these discoveries, we propose a
new algorithm, namely, subband-based ICA, that integrates [CA with time-frequency analysis
to separate mixed signals. Subband-based ICA and the early auditory models are compared in
Figure 2.1. The new algorithm can accomplish the separation task successfully in the presence
of strong noise, or when working in an on-line version.

The outline of the algorithm is described in the following:

1. First, each component z;(n) of the observation x(n), where 1 < j < m, is filtered into
subband signals.

Though digital filter banks have been built to mimic the subbanding function of the
cochlea [68], for simplicity and to provide the linearity required by ICA, the orthogonal
Daubechies wavelet packet decomposition [19] is used instead of the cochlear filter bank:

2h(n) =< 2PN, el >, (2.4)

where %V = (z;(n),aj(n — 1),y a5(n = N + 1)), e = (ex(1),ex(2), -, ex(V)) is a
vector of coefficients determined by the k" band Daubechies wavelet filter, and N is a

window size.

2. The averaged powers of the decomposed signals in every band are computed and sorted
by a fast sorting algorithm, for example heap sorting.

3. Then the nonholonomic learning rule (i.e., (2.1) and (2.2) with the diagonal elements of
Q being zeros) is applied only to the bands that have the strongest power, for example,
to the strongest fourth of all the signal bands, for the following reasons:
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o If the noise is broad-band, the signal to noise ratio (SNR) will be larger for those
bands which have the strongest power.

o If the noise is limited to narrow bands, many signal bands will be noiseless, which
means that good separation results can be obtained in those bands.

We denote the demixing matrix in the £** selected band by
Wi
wk=1
wi
ith

where row W;-“, 1 < j < mn,is used to get to the 7" component, yf(t), of the estimated
source signal y(¢) in the k' band.

4. Noise is reduced using a soft thresholding algorithm [22] applied to the subband decom-
posed signals.

5. To recover the estimated source signal y(t), we have two methods:

a. First recover the overall unmixing matrix W from the unmixing matrices associated
with different subbands, and then recover y(t¢) from Wx(t). Competitive learn-
ing [31] is applied to cluster the rows of the unmixing matrices obtained in different
subbands. The overall unmixing matrix W consists of n clustered rows.

b. Recover y(¢) directly from the y;-“(t), 1 < 7 < n by the wavelet packet reconstruction
algorithm.

Depending on the practical situation, we can choose (a) or (b) to get the best result.

Note that besides the virtually increased SNR in those frequency bands where we applied
the ICA learning rules, the fact that subband signals, i.e., wavelet coefficients, are more peaky
and heavy-tailed distributed than the original signals also greatly contributes to the success
of subband based ICA when it is applied to noisy mixtures or performed on-line. Indeed,
an assumption underlying the ICA learning rule is that the source signals are non-Gaussian.
However, the presence of noise makes the signal mixture more like a Gaussian. Also, even
with a little noise, in a short time period, the mixture signal distribution may come close
to a Gaussian because of nonstationarity. Therefore classical ICA algorithms do not work
well in very noisy situations when performed in an on-line version. On the other hand, wavelet
coefficients of signals are much sparser than the original signals, which leads to a more peaky and
heavy-tailed distribution. Actually, wavelet coefficients have been modeled by a typical super-
Gaussian distribution, a Laplace distribution, in wavelet denoising and coding research [61].
Our simulations on speech and music signals also prove this point. By applying the learning
rule to the super-Gaussian subband signals, subband-based ICA converges to the unmixing
matrix quickly even in the case of noisy mixtures or when performed on-line.

2.4 Adaptive Basis Selection in Wavelet/DCT Packets

Subband-based ICA enhances the separation capability by decomposition of the signal into
different frequency bands. But the problem of designing the filter bank remains. For example,
it is desirable that we do not split the signal into two bands at the frequency where the energy
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of the signal is concentrated, because otherwise we might segment one or several continuous
signal streams in the time-frequency plane into two different bands, which could affect the
performance of ICA in each band. So, depending on different signal properties, we can design
different filter banks to improve the performance of subband-based ICA.

To address this problem, we incorporated the adaptive basis selection algorithm, proposed
by Coifman et al. [15], into the subband-based ICA algorithm.

As in the procedure described in Section 2.3, we have the following steps:

1. First we choose Shannon entropy as the cost function and apply the adaptive basis selec-
tion algorithm using Wavelet or DCT packets (see the details in [15]) to the summation
of the mixed signals to get the best basis.

2. Then we project each mixed signal onto the best basis.

3. The learning rule is applied only to those of the projected signals that have the strongest
normalized power. Noise is reduced by thresholding if necessary.

4. Competitive learning is used to group the rows of the unmixing matrices obtained from
different bases to get the overall unmixing matrix W.

The best basis selection algorithm actually accomplishes the task of adaptively selecting
filter banks based on the properties of the signal, which makes subband-based ICA more robust
against noise.

2.5 Experimental Results

First let us introduce a performance index E, which is defined as in [4]:

n n n

E:Z(Zﬂ _I_Zizz |pij| |_1)

P et mazy|pixl mazy|pi;

where P = {p;;} = WA. The smaller the index is, the better P approximates a permutation
matrix which has only one nonzero element in each row and each column, and the better the
separation is.

In the following paragraphs, we report our experimental results both in batch and on-
line modes.

In batch mode, we separated two mixtures of two speech signals, randomly selected from
the TIMIT speech library, and added strong white noise. These speech signals were sampled
at 8KHz. The average SNR of the mixtures was 0.51 dB. From the mixtures it was hard to
understand any word of the speech. Then subband-based ICA was applied to separate the
mixture signals. The performance index E of this separation was 0.08 and the SNR increased
to 5.64 dB. The separated speech signals were understandable, though still noisy.

Next, still in batch mode, we tested our algorithm on two mixtures of strong white noise and
the test data street.wav and beet.wav which were used at the ICA 1999 conference [38]. The
power of the noise was the same as the average mixed signal power, i.e., the average SNR was 0.0
dB. Despite the low SNR, subband-based ICA based on adaptive basis selection was successful
in the separation. For purposes of comparison, we also tested the Fast ICA algorithm [34] and
the Extended Infomax algorithm [39] on those noisy mixtures. The codes for Fast ICA and
Extended Infomax were downloaded from [33] and [41] respectively. For Extended Infomax we
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Approach Index E Average SNR, of

the separated signals

Subband based ICA 0.051 4.31 dB
Fast ICA 0.124 -1.63 dB
Extended Infomax 0.118 -1.38 dB

Table 2.1: Simulation of different ICA algorithms. The average SNR of the mixed signal is
0.0 dB.

modified the learning rate trying to get the best performance for our test data. The separation
results are shown in Table 2.1.

From the above table, we can see that subband-based ICA is robust against noise. The
waveforms in the separation obtained using subband-based ICA are shown in Figure 2.2.

signal 1:street.wav

0.1 *
o 4
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o 2 a4 6

8 10 12 14 16 18 20
signal 27 beet.wav
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8 18 N :I,2 14 16 i8 20
Recovered signal 1

14 16 i8 20

Rgecovercjég signa:l'%

20

Figure 2.2: Separation in the presence of strong white noise

Our on-line separation experiments were as follows.

First, we on-line separated two mixtures of a violin melody and a segment of some pop
music. These musical signals were sampled at 8K Hz. We used a modified Extended Infomax
algorithm [39], nonholonomic ICA without wavelet decomposition, and subband-based ICA.
We modified the Extended Infomax algorithm into an on-line version and changed its learning
rate to achieve good performance on our test data. The performance indexes of these three
algorithms are shown in Figure 2.3. From this figure, we can see that subband-based ICA did
the separation successfully, while the other two methods failed.



A. The curve of the performance index of the Entended Infomax algorithm
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B. The curve of the performance index of the nonholonomic ICA
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Figure 2.3: Experiment 1: the curves of the performance index E

Also, subband-based ICA was much faster than the other two methods. We used a Sun
Ultral0 with 500M memory to run the Matlab scripts. The times needed to separate the
mixtures are listed in Table 2.2.

Approach Separation Time (sec.)
Modified Extended Infomax 61.72
Nonholonomic ICA 86.68
Subband-based ICA 18.05

Table 2.2: Experiment 1: The separation times needed by different ICA algorithms

Second, we tested those online algorithms on mixtures of two songs. Those signals were also
sampled at 8KHz. The same three separation algorithms were tested as before. The curves of
the performance index E are shown in Figure 2.4. Clearly, subband-based ICA is much better
than the other two methods.

In addition, the times needed to separate the mixtures are listed in Table 2.3.

Approach Separation Time (sec.)
Modified Extended Infomax 1582.62
Nonholonomic ICA 563.24
Subband-based ICA 101.78

Table 2.3: Experiment 2: The separation times needed by different ICA algorithms

Third, we tested the on-line algorithms on the mixtures of two other musical signals. After
processing the data, the performance index E of the subband-based ICA converged to 0.0181
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A. The curve of the performance index of the Entended Infomax algorithm
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Figure 2.4: Experiment 2: the curves of the performance index E

while the performance indexes of the Extended Infomax algorithm the nonholonomic ICA were
still 3.1894 and 2.1132 respectively. The waveforms of the source signals and separated signals
are shown in Figure 2.5.

2.6 Conclusion

Inspired by our understanding of the subbanding strategies used in the early auditory system,
we presented subband-based ICA, a powerful new algorithm for separating mixed signals. By
performing separation in several frequency bands where the SNR is higher than in the original
signal mixtures, subband-based ICA is robust against noise and converges to the real demixing
matrix quickly. Furthermore, by incorporating a best basis selection algorithm, it can be
adaptive to the properties of the signal and noise. Finally, the fact that subband signals, i.e.,
wavelet coefficients, are more peaky and heavy-tailed distributed than the original signals also
contributes to the success of subband based ICA. The experimental results fully demonstrate
its effectiveness.

Also, subband-based ICA is a computationally efficient algorithm because it reduces the
computational complexity by performing separation on the down-sampled signals in several or
even a single frequency band. Its speed is much higher than those of previous ICA algorithms.

Furthermore, we can generalize subband-based ICA by replacing the subband decomposition
with some appropriate projection. For example, a nonlinear projection can be used under some
criterion, e.g., maximum likelihood, to derive a nonlinear ICA.

Our future work will include using some signal cues, for example, the pitch of acoustic
signals, and available prior knowledge, to guide separation. In this way, we may increase the
convergence speed and accomplish the separation even in cases where the number of sensors is
less than the number of sources. Some work has been initiated in this direction.
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Chapter 3

Support Vector Machines for Pattern Recognition

3.1 Introduction

The Support Vector Machine (SVM) is a powerful new machine learning algorithm, which
is rooted in statistical learning theory [65]. By constructing a decision surface hyperplane
which yields the maximal margin between positive and negative examples, SVM approximately
implements the Structural Risk Minimization (SRM) Principle. This principle is based on the
fact that the error rate of a learning machine on test data is bounded by the sum of the training
error rate and a second term that depends on the Vapnik-Chervonenkis (VC) dimension, a very
important concept presented in [65]. SVM can minimize the training error rate and the second
term at the same time. Many experiments have shown the good generalization performance of
SVM on problems such as isolated handwritten digit recognition [58], object recognition [10],
speaker identification [57], and face detection [49].

In the following sections, we first review the theories related to SVM, including the Empirical
Risk Minimization Principle and the Structural Risk Minimization Principle. We then describe
how the Structural Risk Minimization Principle is approximately implemented by SVM, and
finally summarize and discuss properties of SVM.

3.2 Empirical Risk Minimization

3.2.1 Expected Risk and Empirical Risk

In two-class pattern recognition, the supervised learning task can be formulated as follows:
Given a set of decision functions

fxA):Ae A, f(xA):RY —{-1,1} (3.1)
where A is a set of abstract parameters, and a set of examples
(X17y1)7(x27y2)"'7(X17yl) Xj € Rvai € {_171}

drawn from an unknown distribution P(x,y), find a function f(-, A\*) that provides the smallest
possible value for the expected risk:

RO = [ 31766,0) = ol Plx, y)dxdy

The functions f(-, A) are called hypotheses, and the set { f(-,A\): A € A} is called the hypothesis
space and is denoted by H. Thus the expected risk is a measure of how good a hypothesis is
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at predicting the correct value y at a point x. The function f(-,\)is called a trained machine,
given a particular choice of A through training. For example, the hypotheses could be Radial
Basis Functions or Multi-layer Perceptrons with a fixed structure. In this case, the parameter
set A is the set of weights and biases of the networks.

Because the probability distribution P(x) is unknown, it is impossible to compute the
expected risk R(A) directly. So instead of trying to get the exact value of R()), a statistical
approximation of R(), called the empirical risk, is computed on the training set as follows:

1 {
Remp(A) = ﬂ Z |f(Xi7 A) - y2|
=1

3.2.2 Uniform Convergence and VC Dimension

According to the law of large numbers, the empirical risk R.,,, converges in probability to the
expected risk R. Hence a straightforward idea is minimizing the empirical risk rather than
the expected risk. This idea is called the Empirical Risk Minimization (FRM) Principle. An
assumption in the ERM Principle is that if R.,,, is converging to R, the minimum of R.,,, will
converge to the minimum of R too. If this assumption actually does not hold, the ERM Principle
does not lead to a correct inference. Fortunately, as shown by Vapnik and Chervonenkis [64],
this assumption holds if and only if convergence in probability of R.,,, to R is replaced by
uniform convergence in probability. Here, uniform convergence is defined as follows:

for any A € A and ¢ > 0, P(sup |R(A) — Remp(A)| > €) — 0 as N — o
A

Vapnik and Chervonenkis also showed that the finiteness of the VC dimension & of hypothesis
space H is the necessary and sufficient condition for uniform convergence of the ERM. The VC
dimension of the hypothesis space H is defined as follows:

Consider functions that correspond to the two-class pattern recognition case as
defined in (3.1). If a given set of [ points can be labeled in all 2! possible ways, and
for each labeling, a member of the set { f(-, A\)} can be found which correctly assigns
those labels, we say that that set of points is shattered by that set of functions. The
VC dimension for the set of functions { f(-,A)} is defined as the maximum number
of training points that can be shattered by {f(-,A)}. In [11], it is proved that the
VC dimension of the set of oriented hyperplanes in RV is N + 1.

Thus the VC dimension is a measure of the complexity of H, and it is often, but not necessarily,
related to the number of free parameters of f(-,\)). For example, the VC dimension of a set of
Radial Basis Functions or Multi-layer Perceptrons is controlled by the number of hidden units.

3.2.3 Risk Bound

Using the concept of the VC dimension, Vapnik [65] derives a bound on the deviation of the
empirical risk from the expected risk. That is, with probability 1 — n where 0 < n < 1, the
following inequality holds:

R(A) € Remp(N) + wl(log(m/h) +11) —losn/t) gy (3.2)

where h is the VC dimension of f(-, A)), the right hand side of (3.2) is called the “risk bound”,
and the second term on the right side is called the “VC confidence”. This bound is independent
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of P(x,y). Clearly, in order to achieve small expected risk, which means good generalization
performance, both the empirical risk and the VC confidence have to be small. Because the VC
confidence is an increasing function of the VC dimension A and R.,,, is usually a decreasing
function of h, there is a tradeoff between these two terms when choosing the value of h. How
to choose an appropriate value for A is a difficult but important problem.

3.3 Structural Risk Minimization

The bound (3.2) suggests a new induction principle, Structural Risk Minimization (SRM).
The SRM Principle of Vapnik [64] aims to solve the problem of choosing an appropriate
VC dimension. Note that while the VC confidence depends on the VC dimension h of the
given class of functions, the empirical risk R.,,, depends on the particular function chosen in
training. To minimize h and R.,,, at the same time, Vapnik constructs a nested structure of
hypothesis spaces
H1CH2C"'CH7LC"'

with the property that 2(n) < h(n+1) where h(n) is the VC dimension of the set H,, and can be
computed, or has an upper bound. For each set H,, the goal of the training is simply to minimize
Rep,p. Then the trained machine whose sum of VC dimension and R.,,, is minimal among all
trained machines is chosen as the final learning machine. SVM approximately implements the
SRM Principle so that the VC dimension and R.,,, are minimized at the same time.

3.4 Construction of Support Vector Machines

This section describes how to construct a Support Vector Machine (SVM) [65] step by step,
from the simplest case of linearly separable patterns to linearly non-separable patterns, and
finally to non-separable patterns.

3.4.1 Optimal Hyperplane for the Linearly Separable Case

First, in the linearly separable case, one wishes to find the best hyperplane that separates the
data. Here, “linear separable” means that one can find a pair (w,b) such that

wlx; +b>1 Vx; € Class 1 (3.3)
wix, +b< -1 V x; € Class 2 (3.4)

In this case, the hypothesis space is the set of functions
f(x;w,b) = sign(wTx + b) (3.5)

To make a decision surface correspond to a unique parameter pair (w,b), the following constraint
is imposed:

_min l lwTx; + b =1 (3.6)
where x1,...,%; are points in the data set. The hyperplanes that satisfy (3.6) are called
canonical hyperplanes. Notice that (3.6) is just a normalization. As mentioned in Section 3.2.2,
the VC dimension of the canonical hyperplanes in R is N 4 1, which is the total number of
free parameters in (3.5). To implement the SRM Principle, a structure on the set of canonical
hyperplanes is produced by adding another constraint as follows:
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Let D denote the diameter of the smallest N-dimensional sphere containing all the points
X1,...,X;. Then the set

f(x;w,b) = sign(wrix 4 b) | ||w] < 4 (3.7)
has VC dimension h that satisfies the following bound [65]:
h < min [D?A?], N + 1 (3.8)

Moreover, it can be shown that the distance from a point x to the hyperplane defined by the

pair (w,b) is

|lwTx 4 b|
w

d(x;w,b) = (3.9)

Substituting (3.6) into (3.9), it follows that the distance between the canonical hyperplane and

the closest data point is ||v1v—|| Thus if ||w|| < A, the distance between the canonical hyperplane

and the closet data point has to be larger than %. This means that the constrained set of

canonical hyperplanes of (3.7) is the set of hyperplanes whose distance from the data points is
at least %. Clearly, after the normalization, the distance between the two classes is ||v2v—|| This
distance is called the margin of separation.

According to the bound (3.8), minimizing ||w|| will make the VC dimension small. So
among the canonical hyperplanes that correctly classify the data, the one with the smallest
||w|| minimizes the risk bound (3.2). Formally, finding the optimal decision plane is equivalent
to the following quadratic programming (QP) problem:

Minimize o(w) = 1|w|?
w,b
subject to  yi(wTx;+b)>1 i=1...1 (3.10)

This constrained optimization problem is called the primal problem. Here the cost function
®(w) is a convex function of w and the constraints are linear in w.

This problem can be solved by the technique of Lagrange Multipliers. The Lagrangian
function is constructed as follows:

1 l
Lisw. b, A) = Sl = Al ) (3.11)
=1

where A = (Aq,..., ;) is the vector of non-negative Lagrange multipliers (notice that here the
definition of A is different from that in (3.1)). The solution to this optimization problem is
determined by the saddle point of L(w,b, A), which has to be minimized with respect to w and
b, and maximized with respect to A > 0. By differentiating L(w,b, A) with respect to w and
b, it follows that

{
=1

{
> Ayi=0 (3.13)
=1

The solution vector w is defined in terms of a linear combination of training vectors. From the
training procedure the optimal w* can be explicitly and uniquely determined by virtue of the
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convexity of the Lagrangian. To determine the optimal b*, however, one needs to resort to the
Karush-Kuhn-Tucker (KKT) “complementary” condition [27]:

AN y(w x;+0%)=1]=0 fori=1,2,...,1 (3.14)

Only those Lagrange multipliers exactly satisfying (3.14) can assume nonzero values. The data
points (x;,¥;) for which the corresponding A* > 0 are called support vectors. From a geometric
perspective, the support vectors are those data points that lie closest to the decision surface.
From (3.14) it follows that the optimal b* can be computed as

T
* *
b* =y, —w" x;

for any support vector. In practice, it is numerically safer to take the mean value of all such 6*s.
From (3.12) and (3.13), the original primal problem can be reformulated into its dual prob-
lem:

Maximize — Q(A) = Yiy A — 5000y Yhoy MdjmiyxTx;
subject to LNy =0
AN>0  fori=1,2,...,1 (3.15)

Also, we can reformulate the decision function (3.5) as

f(x) = sign(i yhix ! x; + b) (3.16)

=1

where (x;,y;) are support vectors.

3.4.2 Soft Margin Hyperplane for the Linearly Non-Separable Case

In the linearly non-separable case, there exists at least one data point (x;,y;) that violates
the constraint:
yi(WTXi—I—b)Zl, 1=1,2,...,1

Accordingly, the margin of separation is said to be soft. To deal with the non-separable
case, one needs a new set of nonnegative scalar variables,{£;}!_,, defined as follows:

y(wrx; +b)>1-¢, i=1,2,...,1 (3.17)

{&}l_, measure the oriented distance of a data point to the decision hyperplane. When
& > 1, the data point falls on the wrong side of the decision hyperplane. In this case, the
support vectors are the data points that satisfy (3.17) with equality even if & > 0.

The following function measures the total number of misclassifications:

{

(&)= I(&-1)

=1

where the indicator function I(¢) is defined by



Unfortunately, using the indicator function in ®(&) results in a nonconvex optimization problem
that is NP-complete. To make the optimization problem tractable, ®(£) is approximated by

Finally in order to maximize the margin and minimize the number of misclassifications
simultaneously, SVM solves the following primal problem:

Minimize d(w, &) = w|P+ Yl & (3.18)

w,b, £
subject to g (wTx; +b)>1-¢ i=1...1 (3.19)
>0 i=1...1 (3.20)

Minimizing the first term in (3.18) leads to minimizing the VC dimension of the learning ma-
chine, and minimizing the second term controls the empirical risk. Therefore, this approach
constitutes an approximate implementation of the SRM principle. Here the parameter C' con-
trols the tradeoff between the complexity and the empirical risk of of the trained machine.

As in the previous section, the dual problem can be formulated as

Maximize Q(A) = 5':1 A — %Zi’:l é‘:l /\i/\jyiijiTX]'
subject to Ei»:l ANy =0
0<N<C  fori=1,2,...,1 (3.21)

The dual problem for the case of non-separable patterns differs from that for the simple case
of linearly separable patterns in a minor but important way: the constraint A; > 0 is replaced
by the more stringent constraint 0 < A; < €. Except for this, the optimization for the non-
separable case and the computation of the optimal w* are done in the same way as in the
linearly separable case.

In addition, the optimal bias value is computed in a way similar to that described before.
Specifically, from the KKT conditions it follows that

MW )i 40— 146]=0  fori=1,2,...,1 (3.22)

To make all the variables {£}'_; nonnegative, it can be derived from the Lagrange tech-
nique that
wik =0, 1=1,2,...,1 (3.23)

where the p; are the Lagrange multipliers. Setting the derivative of the Lagrangian function
for the primal problem with respect to the variable & to zero leads to

Aitp=C (3.24)
From (3.23) and (3.24), it follows that
w =0 if \; <C (3.25)

Hence the optimal bias b* can be computed by taking any data point (x;,y;) in the training
set for which we have 0 < \; < C and therefore p; = 0, and using that data point in (3.22). As
mentioned before, it is numerically safer to take the mean value of b* resulting from all such
training data.
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3.4.3 Nonlinear Decision Surfaces

This section extends the linear optimal hyperplane to more complicated decision surfaces for
the real-world pattern recognition problem. The extension involves two operations:

e First, nonlinearly map an input variable x into a high-dimensional feature space.
e Then, construct an optimal hyperplane in the high-dimensional feature space.

The first operation is justified by Cover’s theorem on the separability of patterns, which may
be stated as follows [17]:

“A complex pattern-classification problem cast in a high-dimensional space nonlin-
early is more likely to be linearly separable than in a low-dimensional space.”

In the second operation, an optimal hyperplane is built in the same way as described in the
previous sections, except that the support vectors are not drawn from the input space, but from
the high-dimensional feature space.

Let {%};\J denote a set of nonlinear transformations from the input space to the feature
space, where M is the dimension of the feature space. The nonlinear mapping is defined as

x = @(x) = (1(%), @2(X)s -, er1(x)) (3.26)
Then a SVM is constructed as follows:
{
f(x)= sign(W*Tgo(X) +b%) = sign(Z Y AT T (x)p(xi) + b*) (3.27)
=1

Let K denote the inner-product kernel, which is defined as
M
K(x,2) = o%(x)0(2) = 3 ¢5(x)¢5(2) (3.25)
7=0
Substituting (3.28) into (3.27) yields

l
f(x)= sign(E yidi K(x,x;) + b*) (3.29)

=1

and the QP problem (3.21) becomes

Maximize — Q(A) = Yliy Ni — & 0oy Thoy Midjwiy; K (xi,%;)
subject to Zi»:l Ay =0
0<N<C  fori=1,2,...,1 (3.30)

The use of the kernel trick greatly reduces the high computational burden of the nonlinear
mapping into the high-dimensional space in SVM.

Note that the expansion (3.28) is a special case of Mercer’s theorem [44]. According to
Mercer’s theorem, the functions ¢;(x) are eigenfunctions of the expansion. They are positive
definite. In theory, the dimensionality of the feature space (i.e., the number of eigenfunctions)
can be infinitely large. Mercer’s theorem provides a way to check whether a candidate function
is really an inner-product kernel in some space. Some commonly used inner-product kernels
are listed in Table 3.1.
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Inner-Product Kernel Type of Classifier

K(x,z) = exp(—||x — 2||?) | Radial basis function network
K(x,z) = (1+x"z)? Polynomial Learning Machine
K(x,z) = tanh (xTz — 0) Multi-layer Perceptron

(only for some values of ¢

which satisfy Mercer’s theorem)

Table 3.1: Summary of commonly used inner-product kernels

3.5 Summary and Discussion

In this section we first summarize some important properties of SVM:

e As an approximate implementation of the SRM Principle, SVM provides a method of
minimizing the empirical risk and the VC dimension at the same time, so that the risk
bound of the trained machine can be minimized, i.e., the trained machine has good gen-
eralization performance.

e By reformulating the primal optimization problem into its dual problem and using a
suitable inner-product kernel, SVM controls the model complexity independently of the
dimensionality of the feature space. Actually, an infinite feature space is allowed in SVM.

e Moreover, the convex cost function in the QP problem guarantees that SVM will find a
globally optimal solution, while many other learning algorithms suffer from falling into
local extrema.

¢ By solving the QP problem during the training phase, SVM automatically tunes all the
parameters in a learning scheme.

Though originally derived from the SRM Principle to address the problem of the tradeoff
between model complexity and generalization ability, SVM is closely related to other known
techniques and research problems:

e The support vectors are usually sparse. They only constitute a fraction of the total number
of examples in the training set. Using the reproducing property of the Reproducing
Kernel Hilbert Space (RKHS), Girosi [29] shows an equivalence between SVMs in the
noiseless case and a Sparse Approximation (SA) scheme that resembles the Basis Pursuit
De-Noising algorithm [14].

e Also in [29], Girosi gives a derivation of the SVM algorithm in the framework of regu-
larization theory. In [24], Evgeniou et al. give a a unified framework for regularization
networks and SVM. The reformulation of SVM in regularization theory reveals the con-
nection between SVM and other known techniques. However, it hides the relation between

SVM and the SRM Principle.

e SVM provides high generalization performance without incorporating any prior knowledge
of the problem. An important research topic is how to incorporate problem-domain
knowledge into SVM to further improve its performance. Some proposed approaches
include adding an additional term that represents prior knowledge in the cost function,
using prior knowledge to design the kernel function [59], and adding virtual examples into
the training set [58]. More efficient and natural ways of adding prior knowledge into SVM
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have yet to be developed. For example, integrating Bayesian learning theory into SVM
might be a good way of exploiting prior information.

e The kernel trick in SVM can also be used in other algorithms that are based on the
inner product of the data. For example, Principal Component Analysis can be done in
high-dimensional feature space by using a suitable nonlinear kernel function [60]. Fisher
discriminant analysis also uses a similar idea [45].
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Chapter 4

A Hybrid ICA/SVM Learning Scheme and its Application to

Face Detection

4.1 Introduction

In this chapter, we propose a new hybrid unsupervised/supervised learning scheme that in-
tegrates Independent Component Analysis with the Support Vector Machine (SVM), and we
apply this new learning scheme to the face detection problem. As a powerful unsupervised
learning algorithm, ICA can not only “blindly” separate mixed signals as shown in Chapter 2,
but also effectively extract low-level features in signals. In [9], Bell and Sejnowski point out
that the independent components of natural scenes are edge filters. And in [48], Olshausen and
Field show an equivalence between sparse coding and an ICA algorithm in the case of no noise
and a square system (i.e., the dimensionalities of output and input are same). Using their fea-
ture extraction capability, [CA algorithms have been successfully used in face recognition and
facial expression analysis, and have achieved better results than Principal Component Analysis
(PCA) [8, 21, 42]. On the other hand, SVM is a promising supervised learning algorithm. As
discussed in Chapter 3, by minimizing the empirical risk on the training data set and the model
complexity, measured by the VC dimension, at the same time, SVM gives good generalization
performance on pattern recognition problems. Combining these two learning algorithms yields
a powerful hybrid learning scheme. In this chapter we apply this new learning scheme to the
face detection problem. Specifically, we use ICA in two different ways to extract low-level fea-
tures from a window sliding over an image, and then apply SVM at a high level to classify
the extracted ICA features as face or not. In addition, to reduce the time of the detection
procedure, a skin-color filter is implemented to find the candidate face regions in an image, so
that the sliding window moves over reduced image regions. Experimental results demonstrate
the effectiveness of the new hybrid learning scheme on the face detection problem.

The rest of this chapter is organized as follows. Section 4.2 gives a short review of face
detection methods. Section 4.3 presents the method of finding candidate face regions in images
using a skin-color filter. Section 4.4 presents the hybrid ICA/SVM learning scheme. Section 4.5
describes the face detection system based on this scheme. Section 4.6 reports our experimental
results. Finally, Section 4.7 contains conclusions and discussion.

4.2 Literature Review on Face Detection

Face detection has important applications in various areas, such as intelligent human-computer
interaction, video surveillance, video indexing, and object-based video coding. These applica-
tions have contributed to an increasing research interest in face detection in recent years. In

22



this section, we give a short review of the technical literature on face detection.

In [62] Sung and Poggio propose an example-based learning approach to detecting frontal
human faces. They use six Gaussian clusters to model the distributions of face patterns and
six other Gaussian clusters for non-face patterns, and use two distance metrics to train a Mul-
tilayer Perceptron as the classifier. Rowley et al., in [54] and [55], use a retinally connected
neural network to detect faces in an image. Multiple networks are used to improve system
performance. In [49] Osuna et al. apply a support vector machine to face detection and obtain
slightly better results than Sung and Poggio on two test sets. In [50] Qian and Huang report
a detection scheme that combines template matching and a feature-based detection algorithm
using hierarchical Markov random fields (MRF') and maximum a posteriori probability (MAP)
estimation. In [56] Samaria uses Hidden Markov Models (HMM) for face detection. In [16]
Colmenarez and Huang use Kullback divergence to maximize the discrimination between pos-
itive and negative examples of faces. A family of discrete Markov processes is used to model
faces and background patterns. Detection is based on the likelihood ratio computed during the
training phase. In [46] Moghaddam and Pentland propose a detection method that is based
on density estimation in a high-dimensional space using an eigenspace decomposition. In [51]
Rajagopalan et al. apply higher-order statistics and HMMs to detect faces. In [53], Roth et
al. present a face detection method that uses a Sparse Network of Windows (SNoW) learning
architecture, which has been successfully used in the natural language domain.

In addition to these statistical methods, in [69] Yuille uses deformable templates to model
facial features. In this approach, facial features are described by parameterized templates. The
best fit of the elastic model is obtained by minimizing an energy function. Texture information
has also been used for detecting faces [18].

To speed up the detection procedure, color and motion information can be exploited in
color images and video sequences [66]. A single Gaussian or a mixture of Gaussians can
be used to model the skin color distribution. Expectation-Maximization (EM), an iterative
maximum-likelihood estimation algorithm, provides an effective way of learning a Gaussian
mixture model [52]. More recently, several modular systems combining shape analysis, color
segmentation and motion information have been used for locating and tracking faces in a video
sequence [30].

In [67] Yang gives an extensive survey of face detection methods. In [13], Chellappa et al.
give a comprehensive survey of the literature on human and machine recognition of faces, which
is closely related to face detection.

After this short review of face detection, we are ready to present our face detection system
based on the hybrid ICA/SVM learning scheme. In a preliminary section, we first introduce the
preprocessing procedure used in our detection system, which includes two main components, a
skin color filter and histogram equalization.

4.3 Skin Color Filter and Other Preprocessing

Though skin color can be nicely modeled as a mixture of Gaussians as mentioned before, our
system uses a simpler method to find possible skin regions in an image because we only use it
to reduce the search area in the image instead of finding exact face locations. This method is
a modified version of the skin filter proposed in [26] and, in essence, is a thresholding approach
in hue and saturation space. It includes the following steps:

¢ Pirst, the input color image in RGB format is transformed to log-opponent (IRgBy) values,
and from these values the amplitude, hue, and saturation are computed. The conversion
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from RGB to log-opponent is computed as follows:

L(R)+ L(B)+ L(G)

I= 3 (4.1
R, =L(R)- L(G) (4.2)
B, = 1(p) - HC) ;“ L(R) (4.3)
where L(z) = 105log 10(z + 1).
Second, the log opponents are transformed into hue-saturation space as follows:
H = arctan®(R,/B,) (4.4)

S = /R + B? (4.5)

where H and S represent the hue and saturation images respectively, and the unit for H
is degrees.

Figures 4.1, 4.2, and 4.3 show a color image, its hue image, and its saturation image
respectively. Note that there is a strong blocking effect in the hue image (Figure 4.2).
The reason is that, in image coding, many fewer bits are assigned to the color information
than to the gray intensity information. This suggests that using only color information
to locate faces in images is not robust to image coding error.

Figure 4.1: A test image for face detection

Next, by a simple thresholding method, we produce a binary mask M, , that locates face
candidate regions in an image. The thresholding method is defined as follows:

M. 1 if120< H,,, < 175
Y10 i 15<8,, <75

where M, H, ,, S:, are the values of the binary face candidate mask, hue image, and
saturation image at pixel (z,y) respectively.

Figure 4.4 shows the binary face candidate mask for the image in Figure 4.1.

It seems that the skin color filter works perfectly, as shown in Figure 4.4. However,
sometimes the skin color filter does not work well. It tends to falsely detect highly
saturated red and yellow areas as face candidate areas. The reason for the problem may

24



350

Figure 4.2: Test image in hue space

Figure 4.3: Test image in saturation space
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Figure 4.4: Possible face areas for test image

be an improper threshold or the low-rate image coding. Clearly, this simple approach is
inadequate for finding accurate face locations in an image. However, it is acceptable for
our system because we only use it as part of the preprocessing to reduce the image area
scanned by a sliding window.

o After the binary face candidate mask is produced, simple morphological operations are
performed on the mask, which include binary closure (i.e., dilation followed by erosion)
and removal of small blobs, because small blobs usually arise from non-face regions.

The binary mask after the morphological operations is shown in Figure 4.5.

Figure 4.5: Final face candidate mask for the test image

Using the mask, we can find candidate face areas in an image, and the sliding window can
move only over the candidate areas instead of the whole image. In order to compensate for
different illuminations, camera responses, etc., histogram equalization is performed over the
image blocks defined by the sliding window.

4.4 Hybrid ICA/SVM Learning Scheme

In this section we present a new hybrid learning scheme that integrates ICA and SVM. By
exploiting higher-order statistics, [CA can find an independent basis for the data, and obtain
a better clustering and representation of the data than PCA. When applied to natural images,
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ICA filters are edge filters. When training on a large number of natural image blocks, we can
even get a wavelet-like ICA basis. But in contrast to wavelet analysis, the ICA basis is adaptive
to the training data.

In the hybrid learning scheme, after [CA feature extraction, SVM is applied to classify the
features. One common characteristic of I[CA and SVM is sparsity. The ICA output is sparse,
and the support vectors in SVM are also sparse. In the following section, we describe this
hierarchical sparse learning architecture.

4.4.1 ICA Feature Extraction
Redundancy Reduction, ICA, and Sparse Coding

As shown in [5, 6, 7, 20], an important characteristic of sensory processing in the brain is redun-
dancy reduction. One method of achieving redundancy reduction is based on the minimization
of mutual information of the system outputs. According to the theory developed in Chap-
ter 2, we know that ICA is such an algorithm. Actually, experimental results have shown that
trained ICA bases are very similar to the receptive fields of simple cells in mammalian visual
cortex [9, 47, 48]. [63] reports a detailed comparison between ICA features and the properties
of simple cells in the macaque primary visual cortex, and finds good matches to most of the
parameters, especially if video sequences are used instead of still images.

Another method of reducing redundancy is sparse coding [7, 25, 47], which adds to the cost
function a term that represents the sparseness of the output. If the data has a super-Gaussian
distribution, sparse coding results in approximate redundancy reduction. These two approaches
are equivalent to each other in some cases, as shown in [48].

Connection between Projection Pursuit and ICA Feature Extraction

In addition to its close relation to sparse coding, ICA feature extraction is related to projection
pursuit [32]. Projection pursuit tries to find “interesting” projections for multidimensional
data. In [32] Huber argues that the most interesting directions are those that show the least
Gaussian distributions. At the same time, ICA can be interpreted as a search for a projection
such that the unmixed signals have maximal non-Gaussianity [35]. The use of the same criterion
in projection pursuit and ICA reveals the connection between these techniques.

Two Methods of ICA Feature Extraction

Given the ICA generative model under the noise-free assumption
x = As

and the ICA reconstruction model

y = Wx,

there are two different methods of extracting features using ICA. These two methods were
proposed by Bartlett et al. [8] for face recognition and were shown to provide equally good
recognition performance. The first method is to find the statistically independent basis images
by ICA and then represent the image by the coefficients of the projection on those basis images
[8]. The second method is to first reduce the dimensionality of the image, and then represent
the image by the independent coefficients that are obtained by applying ICA [8, 42]. These two
methods are explained in detail in what follows:
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Method 1: Independent Image Basis

In Method 1, each row component in the mixture x represents a training image and each row
component in y represents an independent image basis. Note that here an image is represented
by a vector that is the concatenation of all the columns in the image. An ICA representation
of an image is the vector of coefficients of the projection on the independent bases in y.

Because the dimensionality of y is the same as that of x, it becomes necessary to control
the number of independent bases when the size of the training set is very large. Since we
assume the images in x are linear combinations of unknown independent sources in the ICA
generative model, we do not lose information by replacing the original images with their m
linear combinations.

If we view all the pixels in an image as an observation of a random vector, then the images are
linear combinations of the eigenvectors of their covariance matrix. We choose those eigenvectors
that correspond to the m maximal eigenvalues as the ICA training images, because they contain
most of the energy of the original image set. Denote these eigenvectors by p; where? = 1,..., m.
Then p; is a N X 1 column vector, where N is the pixel number in the image. Denote the matrix
that contains the m column vectors, p;, by P,. By performing ICA on PL we can obtain a
matrix of m independent source images. Note that here p! is a row in x. Formally, we have
the following steps:

First from the matrix x, we find the eigenvector matrix P,,. Then we take P! as the mixture
x and apply the ICA algorithm as follows:

y=WP]
= Pr=w-ly (4.6)

where each row of y represents an independent image basis.

Finally, an ICA representation of an image is obtained as follows: The set of images in x
can be represented by their coordinates in the basis of eigenvectors, R,, = xFP,,. A minimum
squared error approximation of x is obtained by

Xpec = R PL = xP, PT. (4.7)
Substituting (4.6) into (4.7), we get
Xrec = RmW_ly = XPmW_ly. (4.8)

The rows of xP,,W~! are the coefficients for the linear combination of independent bases in y.
Thus for the representation of a test image, which is a row vector I« n, the ICA representation is

c=1P, Wt (4.9)

where P,, W~! is obtained during the ICA training procedure.

Figures 4.6 and 4.7 show two sets of learned independent bases of two different dimension-
alities.

Method 2: Independent Projection Coefficients

In Method 2, we view an image as an observation of a random vector, and reduce its di-
mension from N, the total pixel number, to m. Let x,, denote the matrix containing the
dimension-reduced images in its columns. Let {p;}”, again denote the eigenvectors that cor-
respond to the m maximal eigenvalues of the covariance matrix of x, and let P,, denote the
matrix whose columns are {p;}”,. Then we have

X, = PIx (4.10)
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Figure 4.6: Independent basis images obtained from 230 eigenvectors
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Figure 4.7: Independent basis images obtained from 45 eigenvectors
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We apply the ICA algorithm to x,, and obtain
y = Wx,, = WPLx (4.11)

So for a test image which is represented by a column vector Iy«1, its ICA representation,
c, is given by
c=WPLT (4.12)

where the matrix product WPL is obtained in the training procedure. Denote the product
W PL by U. The columns of U are the basis images for the ICA representation in Method 2.
Note that here every component in the representation vector ¢ is independent of every other
component, while in method 1, each basis image is independent of every other basis image.
Details are provided in Bartlett et al. [8].

Figure 4.8 shows a set of learned basis images when the dimensionality, m, is 80.
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Figure 4.8: The ICA basis images obtained from 80 eigenvectors by Method 2

4.4.2 SVM Classification of ICA Features

After obtaining ICA features, we build the SVM training set {c;,d;}\_, where d; is the class
type of feature ¢;. For the face detection problem, d; = 1 when ¢; is extracted from a face
image, and d; = —1 when ¢; is from a non-face image. [ is the size of the training set. SVM for
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classification has been discussed in detail in Chapter 3. Here we mention another point about
SVM. For a large training data set, the SVM training procedure is time consuming. How to
speed up SVM training is an important research topic in the SVM research community. But
different training strategies should only affect the training speed, not the learning ability of
SVM. Here we used the method described in [49] for training.

4.5 The Hybrid ICA/SVM based Face Detection System

In this section we describe how to build a complete face detection system based on the hybrid
ICA/SVM learning scheme. The detection system includes training and testing parts. The
training part consists of the following steps:

1. In a training set for face detection, face and non-face patterns are assigned to 1 and —1
respectively. Fach of these patterns has 20 x 20 pixels. The face patterns include faces
with different facial expressions and under different views; see Figures 4.9 and 4.10 for
some examples.

2. The data is preprocessed to compensate for variations in the training patterns:

e In order to reduce background noise, pixels close to the boundary of each rectangular
training pattern are removed by a binary mask.

¢ Histogram equalization is then performed to compensate for illumination differ-
ence, etc.

3. After preprocessing, the ICA algorithm is applied to the data to learn the independent im-
age bases which are used for feature extraction. Since two different ICA feature extraction
methods can be applied, we can obtain two different set of image bases and features.

4. Using the ICA features, the SVM is trained to construct a decision plane in a high-
dimensional space. Since it is difficult to find a good representative set of non-face pat-
terns, a bootstrapping technique is used to add mis-classified non-face patterns into the
training set, and then the SVM is re-trained to get a better decision plane.

Figures 4.9, 4.10, 4.11, and 4.12 show sets of image blocks after histogram equalization.
They are used by ICA during the training procedure and include face patterns with different
facial expressions and under slightly different views, non-face patterns used in initial training,
and non-face patterns that are first misclassified and then used for bootstrapping.

The testing part comprises the following steps:

1. A skin color filter is used to find a binary mask which locates the face candidate regions
in a test image.

2. The test image is rescaled several times, because we do not have prior knowledge about
the face size.

3. A 20 x 20 window is moved over the face candidate regions to select image blocks for de-
tection.

4. TICA features are extracted from the image blocks, using the pre-stored image bases which
are obtained during the training procedure. Note that we have two different schemes for
feature extraction using two different sets of image bases.
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Figure 4.9: Face patterns with different facial expressions used in training
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Figure 4.10: Face patterns under slightly different views used in training
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Figure 4.12: Non-face patterns used for bootstrapping
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5. The trained SVM classifies the ICA features.
6. Post-processing is performed to enhance system performance:

o If a detection appears at only one scale, it is usually a false detection. By ANDing
the detection locations at different scales, we can effectively reduce the number of
false detections.

e The sliding window method usually leads to several detections near a face region.
Thresholding the number of detections in a neighborhood tends to keep correct
detections and eliminate false detections.

e If a detection is correct, the detections that overlap the correct one are usually false.
So after the previous two steps, the detection location with the largest number of
detections within a neighborhood is assumed to be correct and preserved, while the
other locations with fewer detections are eliminated.

7. The system takes the output of the post-processing as the final detection result.

4.6 Experimental Results

To evaluate the hybrid learning scheme on the face detection problem, we tested the system on
820 face examples from the LAMP face database developed by ourselves and from the Essex
facial image database [23], as well as on 100884 nonface image blocks which we obtained from
the LAMP face database and the web. In the LAMP face database, the face examples were
recorded from TV shows. In the Essex facial image database, face examples have expression
changes and position changes.

The results are reported in Table 4.1. From this table, we see that using ICA feature

Detection System Number of Number of
Miss Detections | False Detections
The Hybrid ICA/SVM Detection 39 54
System based on ICA 1
The Hybrid ICA/SVM Detection 45 1743
System based on ICA 2
The SVM Detection System 41 252

without ICA Feature Extraction

Table 4.1: Face detection results

extraction Method 1, the hybrid learning scheme effectively improves the classification accuracy
compared to the SVM detection system without ICA feature extraction. Several face detections
on the test examples are shown in the following figures.

On the other hand, using ICA feature extraction Method 2 leads to deterioration of perfor-
mance in classifying non-face examples. The possible reason might be the dimensionality of the
features, which is 80 (reduced from 400) in our experiment, and may be too small to represent
the original signals in Method 2.
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Figure 4.13: Face detection example 1: at Scale 1

Figure 4.14: Face detection example 1: at Scale 2
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Figure 4.15: Face detection example 1: at Scale 3

Figure 4.16: Face detection example 2: Fi-  Figure 4.17: Face detection example 3: Fi-
nal result nal result
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Figure 4.18: Face detection example 4: Final result
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4.7 Conclusion and Discussion

In this chapter, we have presented a new hybrid supervised /unsupervised learning scheme that
integrates ICA and SVM to address pattern recognition problems.

In low-level feature extraction, ICA finds independent bases or coefficients to represent data.
From Figures 4.6, 4.7 and 4.8, we see that the ICA bases emphasize edge information in the
image data, as argued in [9]. In addition, because ICA tries to make bases or representative
coefficients independent of each other, the ICA features represent the data better than the PCA
features when the training data are not orthogonal to each other in the probability sense—for
example, face image data with different facial expressions and in different views. In high-level
feature classification, as an approximate implementation of the SRM Principle, the SVM tends
to give good generalization performance. Many applications of SVM have proven this point.
A common characteristic of I[CA and SVM is sparsity. The ICA output is sparse. As shown
in [48], ICA is formally equivalent to sparse coding under some condition. The support vectors
whose linear combination comprises the trained SVM are also sparse. In [29], Girosi proves an
equivalence between SVM and a Sparse Approximation (SA) scheme under noise-free condition.
Thus combining ICA and SVM yields a hierarchical sparse learning scheme. Experimental
results on the face detection problem show that the hybrid ICA/SCM learning scheme effectively
improves detection system performance, compared with applying SVM directly to the original
image data.

An idea that should improve this hybrid learning scheme is integrating SVM with subband-
based ICA, which was proposed in Chapter 2. By applying ICA in the time-frequency plane,
subband-based ICA successfully separates mixed acoustic signals, such as speech and music
signals, even in the presence of strong noise or when performed on-line. Though here the aim
is not to separate mixed acoustic signals, subband-based ICA is expected to find better signal
representations, because it leads to a more sparse output than classical ICA algorithms and
is more robust against noise. Naturally, subband-based ICA can be extended to multi-scale
feature extraction. Since ICA bases are wavelet-like when trained on natural image data, an
interesting similarity between subband-based ICA feature extraction and human auditory (or
visual) processing is that both of them have a two-layered wavelet-like structure.

In addition, inspired by the use of the kernel trick in SVM, we hope to construct a kernel-
based ICA algorithm. The idea is to apply ICA to the high-dimensional nonlinear mapped
space instead of the original signal space. Kernel-based ICA is expected to have applications
to more efficient feature extraction and separation of nonlinear mixed signals.

Finally, we would like to point out that the hybrid ICA/SVM scheme is a general learning
scheme, which can be applied to other problems than face detection, such as speech processing
and data mining.
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Chapter 5

Conclusions

Machine learning algorithms play increasingly important roles in many areas, such as pat-
tern recognition, signal processing, and communications. In this thesis, we have proposed two
machine learning schemes, Subband-based Independent Component Analysis scheme and the
hybrid Independent Component Analysis/Support Vector Machine scheme, and applied them
to the problems of blind acoustic signal separation and face detection.

Inspired by our understanding of the subbanding strategies used in the early auditory sys-
tem, we have proposed subband-based ICA, a new powerful learning algorithm, to solve the
blind source separation (BSS) problem (Chapter 2). Though classical ICA algorithms have been
applied to address the BSS problem, they do not work well in the presence of noise or when per-
formed on-line. By performing separation in several frequency bands which contain most of the
energy in the mixture, the new subband-based ICA approach is robust against noise and con-
verges to the real demixing matrix quickly, even in its on-line version. The experimental results,
as shown in Figures 2.3, 2.4, and 2.5, demonstrate its success while other ICA algorithms fail.
The virtually increased signal-to-noise ratio in those frequency bands, the fact that subband
signals, i.e., wavelet coefficients, are more peaky and heavy-tailed distributed than the original
signals, and the adaptation to the properties of the signal and noise by the incorporation of a
best basis selection algorithm, all contribute to the success of subband-based ICA.

Subband-based ICA is also a computationally efficient algorithm because it reduces com-
putational complexity by performing separation in the down-sampled signals in several or even
a single frequency band. Its speed is much higher than those of previous ICA algorithms, as
shown in Tables 2.2 and 2.3.

We can further generalize subband-based ICA by replacing the subband decomposition
with some appropriate projection. For example, a nonlinear projection can be used under some
criterion, e.g., maximum likelihood, to derive a nonlinear ICA.

Our future work on the blind separation problem will include using some signal cues, for
example, the pitches of acoustic signals, and available prior knowledge to guide separation.
In this way, we may increase convergence speed and accomplish the separation even in cases
where the number of sensors is less than the number of sources. Some work has been initiated
in this direction.

Subband based ICA is, in essence, an unsupervised learning scheme. In Chapter 3, a super-
vised learning algorithm, the Support Vector Machine (SVM), is presented. As an approximate
implementation of the Structural Risk Minimization (SRM) Principle that is proposed in statis-
tical learning theory, SVM provides a method of minimizing the sum of the number of training
errors and the VC dimension, which indicates the model complexity, so that high generalization
performance can be achieved.
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In addition to high generalization performance, SVM can control model complexity inde-
pendently of the dimensionality of the feature space, by reformulating the primal optimization
problem into its dual problem and using an inner-product kernel trick. Actually, an infinite fea-
ture space is allowed in SVM. Moreover, the convex cost function in the QP problem guarantees
that SVM will find a globally optimal solution that automatically tunes all the parameters in
the learning scheme, while many other learning algorithms suffer from falling into local extrema.

Though originally derived from the SRM Principle to address the problem of the tradeoff
between model complexity and generalization ability, SVM is closely related to other known
techniques and research problems:

e The support vectors are usually sparse. They only constitute a fraction of the total number
of examples in the training set. Using the reproducing property of the Reproducing
Kernel Hilbert Space (RKHS), Girosi [29] shows an equivalence between SVMs in the
noiseless case and a Sparse Approximation (SA) scheme that resembles the Basis Pursuit
De-Noising algorithm [14].

e Alsoin [29], Girosi gives a derivation of the SVM algorithm in the framework of regulariza-
tion theory. In [24], Evgeniou et al. give a unified framework for regularization networks
and SVM. The reformulation of SVM in regularization theory reveals the connection be-
tween SVM and other known techniques. However, it hides the relation between SVM
and the SRM Principle.

SVM provides high generalization performance without incorporating any prior knowledge
about the problem. An important research topic is how to incorporate problem-domain knowl-
edge into SVM to further improve its performance. Some proposed approaches include adding
an additional term that represents prior knowledge in the cost function, using prior knowledge
to design the kernel function [59], and adding virtual examples into the training set [58]. More
efficient and natural ways of adding prior knowledge into SVM are yet to be developed. For
example, integrating Bayesian learning theory into SVM might be a good way of exploiting
prior information.

Another research topic related to SVM is that the kernel trick in SVM can also be used in
other algorithms that are based on the inner product of the data. For example, Principal Com-
ponent Analysis can be done in a high-dimensional feature space by using a suitable nonlinear
kernel function [60]. Fisher discriminant analysis also uses a similar idea [45].

Finally in Chapter 4, we have presented a new hybrid supervised/unsupervised learning
scheme that integrates ICA and SVM to address pattern recognition problems.

In low-level feature extraction, ICA finds independent bases or coefficients to represent data.
From Figures 4.6, 4.7 and 4.8, we can see that the ICA bases emphasize edge information in the
image data, as argued in [9]. In addition, because ICA tries to make data bases or representation
coefficients independent of each other, the ICA features represent the data better than the PCA
features when the training data are not orthogonal to each other in a probability sense—for
example, face image data with different facial expressions and seen in different views. In high-
level feature classification, as an approximate implementation of the SRM Principle, SVM tends
to have good generalization performance. Many applications of SVM have proven this point.
One common characteristic shared by ICA and SVM is sparseness. The ICA output is sparse.
As shown in [48], ICA is formally equivalent to sparse coding under some conditions. The
support vectors whose linear combination comprises the trained SVM are also sparse. Thus
combining ICA and SVM yields a hierarchical sparse learning scheme. Experimental results on

43



the face detection problem show that the hybrid ICA/SCM learning scheme effectively improves
detection system performance, compared with applying SVM directly to the original image data.

One idea that should improve this hybrid learning scheme is integrating SVM with subband-
based ICA, which was proposed in Chapter 2. By applying ICA in the time-frequency plane,
subband-based ICA successfully separates mixed acoustic signals, such as speech and music
signals, even in the presence of strong noise or when performed on-line. Though here the aim
is not to separate mixed acoustic signals, subband-based ICA is expected to find better signal
representations, because it leads to a more sparse output than classical ICA algorithms and
is more robust against noise. Naturally, subband-based ICA can be extended to multi-scale
feature extraction. Since ICA bases are wavelet-like when trained on natural image data, an
interesting similarity between subband-based ICA feature extraction and human auditory (or
visual) processing is that both of them have a two-layered wavelet-like structure.

In addition, inspired by the use of the kernel trick in SVM, we hope to construct a kernel-
based ICA algorithm. The idea is to apply ICA to the high-dimensional nonlinear mapped
space instead of the original signal space. Kernel-based ICA is expected to have applications
to more efficient feature extraction and separation of nonlinear mixed signals.

Finally, we would like to point out that the hybrid ICA/SVM learning scheme is a gen-
eral scheme, which can be applied to other problems than face detection, for example, speech
processing or data mining.
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